EXERCICE 6A.1 - BAC 2010

Soit f définie sur IR par : $f(x) = 6 - x - e^{-x}$

On appelle C_f sa courbe dans un repère orthonormé (O, I, J) d'unité 1 cm.

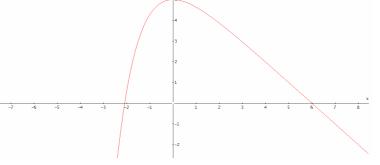
1. Soit la fonction F définie et dérivable sur \mathbb{R}

par :
$$F(x) = 6x - \frac{x^2}{2} + e^{-x}$$

Vérifier que F est une primitive de f.

2. Hachurer sur le graphique le domaine délimité par la courbe \mathcal{C}_f , l'axe des abscisses, la droite d'équation $x = -\ln 6$ et l'axe des ordonnées.

3. Calculer l'aire \mathcal{A} en cm² de la partie hachurée. On donnera la valeur exacte, puis la valeur arrondie de \mathcal{A} au dixième de cm2.



EXERCICE 6A.2 - BAC 2010

Soit f définie sur I =]0; $+\infty[$ par :

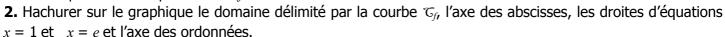
$$f(x) = \frac{1}{2}x + \frac{1}{2} + \frac{\ln x - 1}{x}$$

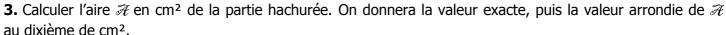
On appelle G_f sa courbe dans un repère orthonormé (O, I, J) d'unité 2 cm.

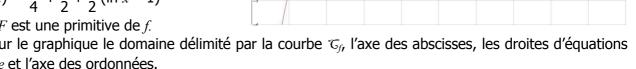
1. Soit la fonction F définie et dérivable sur]0 ;

+
$$\infty$$
[par : $F(x) = \frac{x^2}{4} + \frac{x}{2} + \frac{1}{2} (\ln x - 1)^2$

Vérifier que F est une primitive de f.







au dixième de cm2.

EXERCICE 6A.3 - d'après BTS C 2011

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = (2x + 1) e^{-x} + 2$$

On appelle \mathcal{T} la courbe représentative de f dans le plan muni d'un repère orthonormal (O, I, J) d'unité graphique 2 cm.

- **1.** Déterminer la limite de la fonction f en $-\infty$.
- **2.** On admet que $\lim_{x \to a} g(x) = 2$.

En déduire l'existence d'une asymptote \mathcal{D} à \mathcal{T} dont on donnera une équation.

3. a. Montrer que pour tout réel x :

$$f'(x) = (1 - 2x) e^{-x}$$

b. Étudier les variations de la fonction f et dresser son tableau de variations sur IR.

4. a. Montrer que $F(x) = (-2x - 3) e^{-x} + 2x$ est une primitive de f sur \mathbb{R} .

b. Calculer
$$\int_0^2 f(x) dx$$

c. Calculer la mesure \mathcal{A}_i , en cm², de l'aire du domaine délimité par la courbe T, l'axe des abscisses, et les droites d'équation x = 0 et x = 2. On donnera la valeur exacte puis la valeur arrondie au centième de A.

EXERCICE 6A.4 - d'après BTS C 2010

Soit f la fonction définie sur l'intervalle $[0; +\infty]$ $par f(x) = e^{-x} + x - 1$

On appelle T la courbe représentative de f dans le plan muni d'un repère orthonormal (O, I, J) d'unité graphique 2 cm.

- **1. a.** Calculer f'(x) et étudier son signe.
 - **b.** Déterminer la limite de f en $+\infty$.
 - **c.** Dresser le tableau de variation de la fonction f.
- **2. a.** Montrer que la droite \mathcal{D} d'équation y = x-1est asymptote à la courbe ℃ au voisinage de +∞.

b. Étudier la position de la courbe © par rapport à la droite \mathfrak{D} .

c. Tracer dans le repère la courbe c et l'asymptote \mathcal{D} .

d. Calculer $\int_{0}^{2} e^{-x} dx$ et en déduire l'aire \mathcal{A} , en

cm², de la portion du plan délimitée par la courbe \mathcal{T} , la droite \mathcal{D} et les droites d'équation x = 0 et x = 0

2. On donnera la valeur exacte puis la valeur arrondie au centième de A.