CONTENUS	CAPACITES ATTENDUES	COMMENTAIRES		
Fonction logarithme népérien.		En s'appuyant sur des situations technologiques ou historiques, on justifie la pertinence de la recherche		
Relation fonctionnelle.	Connaître les variations, les limites et la représentation	d'une solution à l'équation fonctionnelle suivante, notée (E) : pour tous réels a et b strictement positifs,		
Nombre e.	graphique de la fonction logarithme népérien. Résoudre une inéquation d'inconnue n entier naturel, de la forme $q^n \ge a$ ou $q^n \le a$ avec q et a deux réels strictement positifs.			
Fonction logarithme en base dix ou en base deux, selon les besoins.		On s'appuie sur des exemples issus des autres disciplines pour introduire ces fonctions.		

I. FONCTION LOGARITHME NEPERIEN

a. Définition :

On considère la fonction f par $f(x) = \frac{1}{x}$

On appelle fonction *logarithme népérien* (et on note « In ») la fonction définie sur]0 ; +∞[telle que :

$$f'(x) = \frac{1}{x} \qquad \qquad f(1) = 0$$

Cette fonction f(x) sera noté **In** x

b. Conséquences immédiates :

- $\ln 1 = 0$
- La fonction $x \mapsto \ln x$ est dérivable et $(\ln x)' = \frac{1}{x}$

Exemples:

• Déterminer la dérivée de $f(x) = 3 \ln x - x$

$$\Rightarrow f'(x) = 3 \times \frac{1}{x} - 1 = \frac{3}{x} - 1$$

2 Déterminer une primitive de $g(x) = \frac{2+3x}{x} = \frac{2}{x} + 3 = 2 \times \frac{1}{x} + 3$

$$\Rightarrow G(x) = 2 \ln x + 3x + c$$

c. Dérivée de u(x)

On rappelle la formule $(v \circ u)' = u' \times v' \circ u$ ou c'est-à-dire $v[u(x)] = u'(x) \times v'[u(x)]$ En particulier, si $v(x) = \ln(x)$ on a :

$$\boxed{(\ln u)' = u' \times \frac{1}{u} = \frac{u'}{u}}$$

Exemple:

Déterminer la dérivée de $f(x) = \ln(2x^3 + x)$

$$\Rightarrow f'(x) = \frac{6x^2 + 1}{2x^3 + x}$$

II. RELATIONS FONCTIONNELLES

a. Relations:

Pour tous réels a et b strictement positifs, on a les égalités :

$$\mathbf{0} \ln (ab) = \ln a + \ln b$$

$$\mathbf{4} \ln (a^n) = n \ln a$$

Exemples:

$$\bullet$$
 ln 6 = ln (2 × 3) = ln 2 + ln 3

2
$$\ln \frac{2}{3} = \ln 2 - \ln 3$$

3
$$\ln \frac{1}{2} = - \ln 2$$

4
$$\ln 32 = \ln 2^5 = 5 \ln 2$$

Attention : les expressions suivantes ne peuvent pas être transformées !

$$ln(a+b) = idem$$

$$\ln(a-b) = idem$$

$$\ln (a + b) = idem$$
 $\ln (a - b) = idem$ $\ln a \times \ln b = idem$

$$\frac{\ln a}{\ln b} = idem$$

b. Le nombre e

Il existe un nombre, noté e, tel que **in** e = 1

Ce nombre a pour valeur approchée : $e \approx 2,718 281...$

Conséquence:

Pour tout x on a : $\ln e^x = x \ln e = x$

$$ln e = 1$$

$$\ln e^2 = 2$$

$$\ln e^3 = 3$$

c. Applications aux équations/inéquations

Pour tout $x \in (0, \frac{1}{r}) > 0$ donc la fonction ln est strictement croissante et donc :

Théorème:

Pour tous réels a et b strictement positifs :

•
$$a < b \Leftrightarrow \ln a < \ln b$$

•
$$a = b \Leftrightarrow \ln a = \ln b$$

•
$$a > b \Leftrightarrow \ln a > \ln b$$

Exemples:

1. On veut résoudre l'équation ln
$$(2x) = \ln 5$$

$$\Rightarrow$$
 In $(2x) = \ln(e^5)$

$$\Leftrightarrow$$
 $2r = e^5$

$$\Leftrightarrow \qquad x = \frac{e^5}{2}$$

2. On considère la suite géométrique de premier terme 1 et de raison 1,5. On a donc pour tout n, $u_n = 1,5^n$

On veut déterminer le rang à partir duquel on a $u_n > 1000$. Jusqu'ici, on utilisait un algorithme, ce qui est \Leftrightarrow 1,5ⁿ > 1000

parfois long. Mais désormais :
$$u_n > 1000$$

$$\Leftrightarrow$$
 1,5" > 1000

$$\Leftrightarrow \ln(1,5^n) > \ln 1000$$

$$\Leftrightarrow n \ln 1,5 > \ln 1000$$

$$\Leftrightarrow n > \frac{\ln 1000}{\ln 1.5} \approx 17,036$$

Donc on prendra n = 18.

III. ETUDE DE LA FONCTION LOGARITHME NEPERIEN

a. Ensemble de définition

La fonction ln x est définie sur]0; $+\infty[$

b. Sens de variation

On sait que $(\ln x)' = \frac{1}{x}$. Or pour tout $x \in]0$; $+\infty[, \frac{1}{x} > 0]$

donc la fonction In est strictement croissante sur]0; $+\infty[$

c. Limites

On va essayer de déterminer les limites aux bornes de l'intervalle d'étude, donc $\lim_{x\to 0+} \ln x$ et $\lim_{x\to +\infty} \ln x$.

→ en 0 (expérimentalement)

x	1	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶
In <i>x (≈)</i>	0	-2,30	-4,61	-6,91	-9,21	-11,51	-13,81

Chaque fois que x est divisé par 10, ln x diminue d'environ 2,30 (c'est-à-dire ln 10). Il semble donc qu'on puisse rendre ln x aussi petit qu'on veut en prenant x suffisamment proche de 0 et donc on admettra le résultat suivant :

$$\lim_{x \to 0+} \ln x = -\infty$$

→ en +∞ (expérimentalement)

x	1	10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
In <i>x</i> (≈)	0	2,30	4,61	6,91	9,21	11,51	13,81

Chaque fois que x est multiplié par 10, ln x augmente d'environ 2,30. Il semble donc qu'on puisse rendre ln x aussi grand qu'on veut en prenant x suffisamment grand et donc on admettra le résultat suivant :

$$\lim_{x \to +\infty} \ln x = +\infty$$

d. Valeurs remarquables

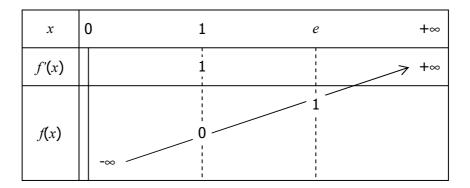
Par définition, on sait que :

• D'autre, puisque la fonction ln est dérivable et strictement croissante sur]0 ; $+\infty$ [, elle prend toutes les valeurs comprises entre $-\infty$ et $+\infty$. Il existe donc un unique réel noté e tel que, en particulier :

$$\ln e = 1$$

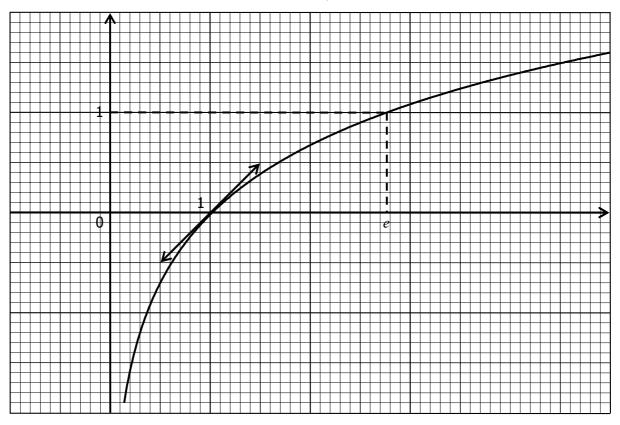
e. Tableau de variation

On résume toutes les informations précédentes dans un tableau :



f. Courbe représentative

Dans un repère orthonormé, on représente la courbe de f ainsi que sa tangente en 0.



IV. CROISSANCE COMPAREE A L'INFINI

On admettra les limites suivantes, pour tout n entier strictement positif :

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = \mathbf{0}$$

$$\lim_{x \to 0+} x^n \ln x = 0$$

V. LOGARITHME DE BASE DEUX OU DIX

Le logarithme néperien est un **logarithme de base** e.

En effet, on a:

$$ln e = 1$$

$$\ln e^2 = 2$$

In
$$e^3 = 3$$

...

En physique, on est souvent amené à utiliser le logarithme décimal (ou logarithme de base 10) noté $\log_{10} x$ ou plus simplement $\log x$ et qui pour tout x est égal à $\frac{\ln x}{\ln 10}$.

On a alors:

$$log 10 = 1$$

$$\log 100 = \log 10^2 = 2$$

$$\log 1000 = \log 10^3 = 3$$

• • •

Ce log est utilisé lorsqu'on est amené à mesurer des valeurs on des ordres de grandeur très différents comme par exemple :

Les sons (le Bel et le déciBel/dB)

- L'échelle de Richter
- L'acidité d'une solution (en chimie, le pH)

Exemple avec le dB:

On mesure un premier son qui a une puissance P.

On a donc: (log P) B donc (10 log P) dB

On mesure un autre son 10 fois plus puissant.

On a donc: $\log 10P = \log 10 + \log P = (1 + \log P) B = 10 + (10 \log P) dB$

Et oui, il n'y a que 10 dB d'écart entre les deux sons!

Ainsi:

- Marteau piqueur (120 dB) et Avion a décollage(130 dB). L'avion fait un bruit 10 fois plus puissant que le marteau piqueur.
- Aspirateur (70 dB) et Moto (90 dB). La moto fait un bruit 100 fois plus puissant que l'aspirateur.

En physique, on est souvent amené à utiliser le logarithme deux (ou logarithme binaire) noté $\log_2 x$ et qui pour tout x est égal à $\frac{\ln x}{\ln 2}$.

On a alors:

$$log 2 = 1$$

$$\log 4 = \log 2^2 = 2$$

$$\log 8 = \log 2^3 = 3$$

...