EXERCICE 3B.1

 $u_{200} =$

On considère la suite dont le terme général est :

$$u_n = \frac{3 + 4n}{1 + 2n}$$

1. a. Calculer (on arrondira éventuellement à 10⁻⁴):

$$u_0 =$$
 $u_4 =$ $u_5 =$
 $u_{49} =$ $u_{50} =$ $u_{100} =$
 $u_{200} =$ $u_{400} =$ $u_{600} =$

b. Vers quelle valeur la suite semble-t-elle se stabiliser lorsque n tend vers $+\infty$?

 $u_{600} =$

c. Calculer pour chaque rang la distance entre u_n et 2 (on arrondira éventuellement à 10⁻⁴):

$$|u_3 - 2| =$$
 $|u_4 - 2| =$
 $|u_5 - 2| =$ $|u_{49} - 2| =$
 $|u_{50} - 2| =$ $|u_{100} - 2| =$
 $|u_{200} - 2| =$ $|u_{600} - 2| =$

2. On considère l'algorithme suivant :

```
N prend la valeur 0
U prend la valeur 3
Saisir P
Tant que |U-2| est supérieur ou égal à
10^-P:
 U prend la valeur (3+4N)/(1+N)
N prend la valeur N+1
Fin de boucle
Afficher N-1
```

- a. A quoi sert cet algorithme?
- **b.** Pourquoi la seconde instruction est-elle « U prend la valeur 3 »?
- 3. En utilisant les résultats précédents, pour quelle valeur de n aura-t-on $|u_n - 2|$...
 - ... inférieur à 10⁻¹?
 - ... inférieur à 10⁻²?
- **5.** Ecrire un programme sur la calculatrice pour répondre aux questions suivantes :
 - **a.** A partir de quel seuil peut-on dire que $|u_n 2|$ inférieur à 10⁻³?
 - **b.** A partir de quel seuil peut-on dire que $|u_n 2|$ inférieur à 10⁻⁴?

6. Conclusion : Il semble que pour tout nombre donné sous la forme 10^{-p} , il existe un n tel que ...

On dira que:

EXERCICE 3A.2

On considère la suite dont le terme général est :

$$u_n = 3 + (-0,5)^n$$

1. a. Calculer (on arrondira éventuellement à 10⁻⁴):

$$u_0 = u_3 = u_4 = u_5 = u_6 = u_7 = u_8 = u_9 = u_9$$

- **b.** Vers quelle valeur la suite semble-t-elle se stabiliser lorsque n tend vers $+\infty$?
- **c.** Calculer pour chaque rang la distance entre u_n et 3 (on arrondira éventuellement à 10⁻⁴):

$$|u_0 - 3| = |u_3 - 3| =$$
 $|u_4 - 3| = |u_5 - 3| =$
 $|u_6 - 3| = |u_7 - 3| =$

- 2. En utilisant les résultats précédents, pour quelle valeur de n aura-t-on $|u_n - 3|$...
 - ... inférieur à 10⁻¹? ... inférieur à 10⁻²?
- **3.** Compléter l'algorithme qui permettra déterminer à partir de quel seuil peut-on dire que la distance entre u_n et sa limite (supposée) en $+\infty$ est inférieure à 10^{-P}, P étant un entier naturel saisi.

```
N prend la valeur 0
U prend la valeur .....
Saisir P
Tant que
```

Fin de boucle

- 4. Ecrire un programme sur la calculatrice pour répondre aux questions suivantes :
 - **a.** A partir de quel seuil peut-on dire que $|u_n 3|$ inférieur à 10⁻³?
 - **b.** ... inférieur à 10⁻⁵ ?
 - **c.** ... inférieur à 10⁻¹⁰ ?
- **5.** Quelle semble être la limite de la suite quand *n* tend vers $+\infty$?